본문 바로가기
수학

평행사변형의 대각선 길이

by 배굿맨 2023. 6. 27.

평행사변형의 대각선의 길이(점A와 점C간)이 거리를 구하는 공식은 $\sqrt{a^2 + b^2 + 2ab Cos \theta}$이다.

 

공식은 빗금 친 수직 삼각형의 대변의 길이를 구하는 문제이므로 피타고라스 정리로부터 쉽게 유도할 수 있다.

 

$c^2 = (a+d)^2 + h^2$

     $=a^2 + 2ad + d^2 + h^2$, 여기서 $d=b Cos \theta, h=b Sin \theta$이므로

      $=a^2 + 2ab Cos \theta + (b Cos \theta)^2 + (b Sin \theta)^2 $

      $=a^2 + 2ab Cos \theta + b^2 (Cos^2 \theta + Sin^2 \theta)$

여기서 $(Cos^2 \theta + Sin^2 \theta) = 1$ 이므로, 

      $=a^2 + b^2 + 2abCos \theta$

 

그러므로 대변의 길이(c) 구하는 공식은 아래와 같다.

 

$\sqrt{a^2 + b^2 + 2ab Cos \theta}$

 

윗 공식은 벡터의 합을 구할 때 매우 유용한 공식이므로 꼭 외워놓는다.

 

만일 $\theta$가 90도이면, 직각사각형이 된다. $\sqrt{a^2 + b^2}$

 

만일  $\theta$가 0도면, c=a+b가 된다.

선분 AD가 a 만큼 이동한 선분은 선분AD에 수평이다. 이 선분을 오른쪽으로 눕힌다고 상상해보자. 그러면 두 선의 이동경로(길이)가 대각의 길이로 보일것이다. 벡터의 합을 배우면 더 쉽게 이해될 것이다.

 

'수학' 카테고리의 다른 글

등비수열, 등비수열의 합, 테일러급수, 푸리에급수  (1) 2024.12.05
수학에서 라디안(Radian)이란?  (0) 2024.06.12
곱셈과 미적분 이해하기  (0) 2022.12.02
원과 구  (0) 2020.03.12
삼각함수의 모든것  (0) 2020.02.15